AD-A136 194 A SYSTOLIC DESIGN RULE CHECKER(U) MINNESOTA UNIY 1/1
MINNEAPOLIS DEPT OF COMPUTER SCIENCE R KRNE ET AL.
. JUL 83 TR-83-13 NBBOB14-86-L-68658
UNCLASSIFIED F/G 12/1 HL




) ™~ o
~f Sf S 2

‘ ddda
3

FEEEEITIT

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

(R

"‘;"".'.-\"\

o

- W;M‘w«: -, -



SN € e I A W A U AL P S S~ R

",

COMPUTER SLH:N(,F 7N
EPARTMENT

t'u'

. i@gtm;p ’:!"' ;
1] LI TR N N ] ] e 4 L1
fMEEEREs e WOE - 9880 ’ sats
EEFCT sEREccs RO TR R AN TR AART ] ] 1)
(EEEBCScEpccc @B . ! BORRYNCERECEicriDBREE
T Agee EEROEECHEEEFE OO0 . suspedounEEcLccBOROE
trerret Fooe crocvecivnezecmns PURRBBLLEOLILTTRRND
eazc::::wnu!ll COPETSTL IR ety . coBUBRRCOECLCELEEBRON:
B3 tarcaa.atlw gt ioteIeaBEt o wEoRRERRCLRERREEC T RO,
\;m-:crma@lm CersoroRcoluEy  FO--0008BC CTPOREDECORTICF
h;asnwﬂtmwwo TRECOTEOALRE  CU---B0BTOUEEEEE---FCRCRQ
ATPLTEET S EE-~--20COY WO----00BGCELGE
~3=rs:.wm~¢!l----‘ O e 11 119 I-EEEENY | BT
S LRS00 OR----tRtoOIRET
p:vbllll Fee L -~ 0000 RE----BRORERLR -~ - - L
RIRCOEOE—-—--SRBRB0-—--PREEI CPO---CPZLOEEC
PTTCHL ---—0PRORE -~ -0PBRRBCEL--CRRRLES
;c~~h=~—l|||i|:c.:u:*-——llli!tll-~-ltlll|lcv~—¢llllo=
“'aaoa—-!llll;we L 12 11 1] S JIER AR L] .
- i) f
,7*~~15§5— . Rttt 2 1 | ¥ v g

RPN AN D . - e

g’

g QPP LN

NI

By ety

B s Lt
; . N 1 g . - P

s A .
U e [, -

R
4 )
g~i-- 908

3vstolic Desizn Rule Thecker
;ac:llnncm~~ho—:=a:t==l: :;:u
PR YR slllo::--a-n-n vEOReNC - ::rrc by
ts.lll!?t”*-—t:‘:.tvslll u~0‘ﬂ
ST T BN CEPETEEY T LY ™ Raliv Kare

c.oll-llsczzcsec I9IE80-- " 0T Sarta} Sahmi
'Gllll'ltao‘éthbﬁcbtll°-~-°.Ua S, C 3314
g-!!llylu:a~557:a cull-~--— ce tecanical seport S3-.5

iy
- July 1443

gontract NOOO14280.C=065()

C-~vRPORBRPPIDLL-CCPOOOREBY
Soec DR RRRPECCCRcCsc RERORRN
SeOLEPRBRBETY cocofdnguee
<opeBccLcccrEcc DB ORROBGE ’ c-o000Ee
| R 1 1 A0 -1 1 23

gogrectSIpRLORETY

e by

M I N N E s%ompra=—




Accesslion f&r

NTIS GRAXL
DTIC TAB
Unannounced O
Justification — ——u

By_YQ(_LiQ_m_GLE—J

D1§3£}bution[

—'Availability Codes

vail and/or
Special

‘%“,\ i

1 Y i A ST R A A R

Sl i Al Yl SN B 0 £ A RO SARC SAE A ¢ g i S e IR S AT Rk
- -

P

<
Computer Science Department ;;f
Institute of Technology oy

136 Lind Hall

43

FA)

L

»
X

University of Minnesota

-"-"n{
)

Minneapolis, Minnesota 55455

1

B

PAROACR
o L
LN

an'e

L
o

52,

. [ )
“A Systolic Design Rule Checker
by
Rajiv Rane
Sartaj Sahni
Technical Report 83-13
July 1983
Contract N00014-80-C-0650
™ ELECTE
Q) DEC 19 1983
DISTRIBUTION STATEMLNT A i D

Approved for public release; |
Dj{t}:?}]tiph Unlimited i

N AT

.. 1':.
-

N - L - L - hd
' L
PEVASVN ST ST !,';‘e'.,'.'.'i'-;!.‘ F AU



R L O A M G e N aP a e "e v e vamiaran. et PO RPN AR VS VS Rl e e e v S KA NN

‘d/’

L LR

L4
-
Vit

A Systolic Design Rule Checker* :

Rajiv Kane and Sartaj Sahni
niversity of Minnesota

oy
LAY -

Abstract.

0 "n e '{
2

TZe avth rJ e
[
)f develop a systolic design rule checker {SDRC) for rectilinear geometries. This e

SDRC reports all width and spacing violations. It is expected to result in a :
significant speed up of the design rule check phase of chip design.
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1. Introduction

Rapid advances in technology are maling it possible to fabricate circuits of
an ever increasing complexity. This increase in circuit complexity poses a
: severe challenge to the algorithms presently in use in design automation tools.
tz One of the ways to meet the challenge is to develop new computer architechures
{E capable of running these design automation algorithms efficiently. Another
) approach is to deveiop yet faster algorithms.
Several new architectures and corresponding algorithms have recently
‘3.; been proposed for design automation. Blank et al /BLAN31] describe a bit map
: processor architecture suitable for boolean operations. wire routing using Lee's
algorithm, and for some design rule check {DRC) functions such as shrink and
expand. Mudge et al [MUDGB2] describe Cytocomputer architecture adapted for
DRC and Lee type wire routing. Yet another DRC architecture is described in
B (SEIL32]. Soms other references for special purpose architectures and associ-
2 - ated algorithms for wire routing are DAMMB2] and [NAIRB2]. A parallel process-
R : ing approach for logic module placement has been developed by Ueda et al
- {UEDAB3]. Simulation has also been the focus of several new architectural stu-
dies. The moast popular such development is the Yoriktown Simulation Engine
((PFIS82], [DENNB2], and [KRONB2]). Another logic simulation machine is
g2 described by Abramovici et al [ABRAB2)]. In this paper, we shall be concerned
) « with the design of a systolic system for design rule checks. Our design differs
from all earlier work on spectial purpose architectures for design automation in
that ours is the Orst systolic design. Of course, systolic designs have been stu-
died for quite some time. A valuable reference is {KUNG82]. Our systolic system
for DRC’s differs from earlier work on hardware assisted DRC's in that it is edge
: based rather than bit map based. Consequantly, it has the potential of being
- much faster than eariier designs.

> Specifically, our systolic design rule checker (SDRC) checks for spacing and
width errors. The design may be extended to include other design rule checks.
Qur design points out the potential for systolic systems in design automation
e applications.

é 2 Polygons and Brrors
»

In arriving at our SDRC, we madse several assumptions on the nature of the
polygon to be handled and aiso on the type of errors to be checked {or. First, we
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assume that polygons are composed of horizontal and vertical edges only.
Hence, only right angled bends are permitted. Polygons may contain holes.
These holes are also restrictad to be pelygons with right angled bends. Figure
shows two exampie polygons that satisfy these restrictions.

This restriction on the sdges composing a poiygon allows a compact
reprssentation of each polygonn. This representation consist of the following :

1. Polygon number. Each polygon is assigned a unique number. Holes within a
polygon are assigned the same number as the enclosing polygon.

Y U V- IE L

B 2. A ssquence of polygon vertices. This sequence begins at the lowermost left
hand vertex of the polygon and is cbtained by traversing the polygon so that
its interior lies to the left of the edge being traversed. Since all edges are
either horizontal or vertical, the polygon vertices {except the first) may be
described by providing a single coordinate. Thus , the polygon of Figure 1(a)
is representsd as:

B ey
1y -SEP L
|

P. O 21, Y1, T2, Y3, Tee Yo Ta: Y2 20y Y11

b

BT Dl

The first symbol p identifies this as an enclosing polygon. n is the peiygon
number. In case of a hole, an h is used in place of the p. Holes are traversed
such that the the interior is to the left of each edge traversed. The representa-
tion for the polygon and holes of Figure 1(b) is: .

P . 25, Y1) T Y3 Ty Yoo T Y10 Too Yoo 210 V11 2120 Y1
h. 0. 213, Vi3 214 Vis 210 V17e 218 V0o 220 Vs
h. o, 24y, Y21, s, Y2 Tose Vos. Zos Yau

VL i

The SDRC assumes that the polygons are well formed. Specifically, open
polygons (Figure 2(a)): polygons with shared edges (Figure 2(b)): polygon
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Figure 1 Exampiss of poiygons
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overlaps {Figure 2{c)); and polygons sharing an edge with a hole {Figure 2(d))
are not permitted. While this assumption of weil-formedness is not essential to
our disscussion, it enables us to concentrats on spacing and width issues. A
minor modification to our design allows the SDRC to check for above malforma-
tions. Also. these inconsistencies need to be explicitly checked before cne can
apply bit map based width and spacing checks.

Lat o denocte the minimum allowable featurs width Figure 3 gives exampies
of polygons with width error Note that many designers do not regard Figure 3(c)
as an error unless the distance ¢ is less than d. Our SDRC is easily changed to
account for this variation. Note that The polygons of Figure ¢ have no width
error evan though they contain soms edges less than d.
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Fgure 4 Polygons with no width errers
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Let s denote the minimum allowable spacing between polygons. The ploy- :"

gons of Figure 5 have space srrors at the points marked *. s
As In the case of Figure 3(c). the configuration of Figure 5(c) is often not “'1

1 considered erronsous unless the distance labeled ¢ is less than s. This change is l:j
k3 also easily made in the SDRC design. D
gl "
-
3. SDRC Architecture d

The SDRC is a hardware device that may be attached to a computer system ]

as a peripheral { Figure 8) or directly to the CPU as in case of a floating point
processor.

A block diagram of tha SDRC appears in Figure 7. The major components of .
an SDRC are two systolic sort arrays (SAX and SAY), controliers for these sort '
arrays, and a design rule checker {DRC). Lat us assume the configuration of Fig-
ure 8. When design rule checks are to be performed, the CPU sends the compact .
descriptions of the polygons to the SDRC. This description is transformed into
explicit edzes by the controfleers for SAX and SAY. Horizontal edges are
created by the cotroller for SAX and inserted into SAX Vertical edges formed by
the controller for SAY and inserted into SAY. The sort arrays sort the edges into
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lexical order. Thus, the SAX sorts edges by y - coordinates and within y - coordi-
nate by x - cocrdinate. Recall that we have assumed that there are no overlap-
ping edges. So, even though every horizontal edge has two x - coordinates, there
is a unique lexical ordering for ths horizontal edges. Similarly there is a unique
ordering for the vertical edges.

As we shall see in the next section, the SAX and SAY are simply systolic
- priority queues. Consequently, as socon as the edges have been formed and
entsred into the SAX and SAY, they may be transmitted in lexical order to the
DRC. First SAX sends its edges to the DRC, which examines them [or width viola-
tions in the y direction and spacing violations in the x direction All detscted
errors are transmitted back to SAX Next SAY transmits its edges to the DRC
which examines them for width errors in the x direction and spacing errors in
the y direction. These errors are sent back to SAY. The errors collected in SAX
and SAY may then be communicated back to the CPU.

Clearly, by using two DRCs, the horizontal and vertical edge processing may ."':
be effactively overiapped. Further, by providing a data path for the errors to go ”'{q
directly from the DRC to the CPU, the use of the SDRC may be pipeiined.

4. Edge Forming

The descriptor for each edge formed in sort array controllers consists of 5
fisids as shown in Figure 8. The terminology used in this Figure is with respect to
ths horizontal edges. y is the y - coordinate for the edge; z; the left x coordi-
nate; z, the right coordinate; p# the polygon number; and ud { up-down) is O if
the interior of the polygon is above this edge and 1 othervrise. In case the DRC
sends errors back to the SAX { rather than directly to CPU) then each edge
descriptor will have two additional bits to record the error. For vertical edges we
may use the terminoclogy of Figure 9 where x is the x coardinate of the edze: v,
and y; are, raspectively, the bcttom and top y coordinates; p# is the polygon
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Figure 8

oumber; and Ir { left right) is O if the polygon interior is to the left of the sdge
and is | otherwise. The p# fleld is used only to identify polygons with errors. This
fleld may be omitted and the detected errors can be associated with polygons by
performing a search at the end.

Exampie 1: The edge descriptors for the horizontal edges of the polygon of Fiz-
ure 10 are :

V1.2, 22 1,0
Yy B, 23 1- :

gl e
[ wmtﬁ
]
'

. Vie Z100 315 1. O
Y0 10 T i, ]
N - Y= %1 4.0
6;?; y.: z‘- zﬂa 1- i
¥ , Vie Z10. 13 1. 0
o y‘. z‘. 23. 1. 1
A The descriptors for the vertical edges are:

. To Ya Y. 1.0
- Ze Yo Yo L. 1
T3 Viz Vs 1. 1
20 Y100 Y. L. 2
Zie Vi Viee 2. O
< ’ 23 Ys. Yo L




87, y?- yl.u 1. 1
2. YnVe L 1L

The transformation from the compact polygon representation to the edge
descriptors is relatively straightforward.

5. The Sort Arrays

While the sorting algorithms have been considered for hardware implemen-
tation {{THOMB2]), priority queues appear tp be best suited for our sort applica-
tion. Twe systolic implementations of priority queues appear in literature. One
is due to Leiserson [LEIS79], and the other due to Guibas and Liang [GUIBB2).
While design of [GUIB82] is simpler than that of [LEIS79], it permits an
insert/delete every four cycles as opposed to once every two cycles for the
design of [LEIS79].

The systolic priority qusus of [LEIS79] is a linear array of processors {PEs)
each having two registers A and B (Figure i!). Each register in the priority
queue is large enough to hold edge descriptor. The array of processors pulsates
in regular cycles with instructions:

74 *373
[
z.y b 98 4
676 573 14 13 l
2 |
1615 ﬁis i
.
{ -] :
1”1 x,7,
Fgure 10
—_— —
— — py
Ovirﬁ.ov—l: 3 'l'—' 3 f—— 3
: ;1 | 39 n
- ‘——-! ; -
s ' . r
!_A'_' ! L A s

Figure 11: S A X and Controller
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being performed for odd i in odd cycles and for even i { i #0) in even cycles. A
new edge can be inserted in the array just before avery odd cycle by setting 5o
to the edge descriptor and Aq to - =.

When all the insertions have been performed, the edges can be extracted in
the lexical order by setting Ag and B to + %o. It takes two cycles to extract each
oedge. Tha edges can be sent to DRC one by one as extractad, thereby overiap-
ping the extraction process and DRC operation.

The remaining details for SAX and SAY may be found in [LEIS79].

S e

The DRC

The DRC is invoked once for horizontal edges and once for vertical edges.
Since the processing that occurs with horizontal edges is the same as that for
vertical edges, our discussion of the DRC is confined to the case of horizontal
edges.

As mensioned earlier, when processing the horizontal edges, the DRC, .
checks for width violations in the y direction and spacing violations in the x
direction. In addition, the spacing and width checks of Figure 12 are also per-

3 formed.

The DRC (Figure 13) is a linear systolic array with the same organization as

the priority qusue of Figure 11. The A and B registers of each PE are ,however

- larger. In describing the fieids of a register, we shail use the notation Afi].x to
] mean field x of register A of PE i. Each register in the DRC has all the fisids

! Y

! e
| | |
i .H. v o,
! ! toer—
)
8) width ervor 3) spaciag ecror

{8 < 8)or (b < 3)
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necessory to describe an edge(Figure 8). In addition, the following flelds are
also present:

PR..

PR

PR

PR

Yrignt --

leftok ..

This i{s a two bit priority fleid used to control the flow of data i1n the A

and B registers. The four possible values assignabie to PR have the fol-

lowing interpretation:

=11: This signifies an empty register. If ud = O, then thus 1s an
smpty register to the right of the rightmost edge( Le edge
2. of Figure 14) in the DRC. If ud = i, then this is an empty
register to the left of the rightmost edge in the DRC.

=10: The register contains an edge that has yet to settie in its
place.

=01: This value is pessible only for an A register edge. it denotes
an edge that has settled

=00: Denotes an edge for which an error has been detected.
A 1 bit width error fleld. It is set to ! if a width error invoiving thus

edge has been detected. -

A ! bit space error field that is set to . when a spacing error involving
this edge is dstected.

.. A 1 bit fleld. This i3 used only for edges with ud = 0. Lat X, Y € {A, Bl

X[i).rightok = | iff there is a j such that

(X[1].P# = y{j] P# and X[i].z, = Y[j].=; and

Y(j]J-ud = 0)

Used in conjunction with rightok. Gives the y-value of the edge that
satisfles the condition of rightok

A 1 bit fisld that is used only for edges with ud = 1. Let x € {A, Bj.
X{i].leftok = : iff there is a limb at the leftand of the edge !Tigure
5(b)).

g AL a P
———— l— ———— ——
Figure 13
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Zeps - Whan leftok = 1, Z4e gives the leftmost point of the edge. Since edges

may get split during processing, Zg: may not equal z; {z; wil be the
current left end of the split edge. Since the rightok and ymga fleids are
used only whan ud = 0 while the leftok and = flelds are used only when
ud = 1, these fields may use the samas physical register space.

It is assumed that all polygons ars to be embeded on a rectangular chip
(Agurre 14). Thus during processing for horizontal edges. the edges _.:, 1.2,
2.1, and 2.2 are loaded in the SAX The adges 1.1 and . 2 oome st of 3AX before
any sther edges in the layout; whereas the edges 2.:, and 2.2 come out in the
end. The DRC is initially loaded with the edge 2.1 for processing edges from SAX
and the edge 3.1 for processing edges from the SAY.

At the start of each cycle of the DRC, an edge is inserted in By. This edze
has PR = 01, and WE = SE = 0. Since edges come from SA { or SAY) only once
every two cycles, the cycle time of the DRC must be at least twice that of the
scrt arrays. Once the sdge enters the DRC at 5y, it moves towards the right until
it fnds its correct position with respect to the edges in the A registers. The A
register edges are ardered by their z; vaiues. As the B register eadges move to
the right, width and spacing checks are performed against the A register edges
in the PEs adjacent to the one the edge is to settie into. Cnce ail the noizontal
edges have been entered into the DRC, we set B{0]PR =11, B{0]UD=. and
A[0].PR = i1. This will cause the detected errors to move to the left of the DRC
from where they may be removed and sent back to SAX or the CPU. .

The basic cycle of the DRC {s described in procedure cycle.

Befors specifying the details of the step 'PROCESS.IN.EACH.PE' . we
describe a [ew procedures used [or Lhis purposs.

6.1 Procedures Used For Width and Spacing Checics
= o

Py

Figure 14

-10-

-




procedurs cycls
f{puisating cycle of the systolic DRC}

shift B edges right |
for e Ei.it<ndo
Bli+:

WE. SE. UD) « (00, ~<», -, 0, 9, 1)
SS.IN_EACH_PE { described later }
{ shift A edges as needed |
for every PEi do )
it AlifPR=4fi+1]PR= 11 andA[i~i1]UD=0
then { mark i as right of rightmost edge |
el::l[i.].UD =0

for cdd i on odd cycles and
even i on even cycles do
if A[i]l.PR > Ali+1].PR
then A(i] «- Ali+.] { interchange edges |

until faise | inflnite loop }
end cycle

Spacecheck 1.1 -

This is used by a PE that contains an edge in its A register that is to the right of
the edge in its B register. Figure 15 depicts two of the situations when the check
is performed.

procedure spacecheck 1.
ift Az -B=z. <
then A SE « {;B.SE ~
end spacecheck 1.1

Polygon

l

2 cer Edge Polygon ]
olygoa A Regis S Pa.‘"“l'
|

3 adge \
3 Regiscer edge 8 aledge




e

E L ey

e s il

N

ST AP Tl

W

Y .o

3

Spacecheck 1.2

This is similar to spacecheck 1.! except that the B register edge is to the right
of the A register edge.

procsdure spacecheck 1.2
Bz ~-Az.<s
then [ASE « ;B.SE « 1]
end spacecheck 1.2

Spacecheck2

This is used to check the interlimb distance in polygons (Figure i8). As edges
progress through DRC, they may get broken. So, the edge in a register may
actually be only a segment of a larger edge. The leftmost point on the original
whole edge is ‘remembered’ in the fleld 2, which takes the place of the Yug
(Zest is used when UD = | while y.g is used when UD = Q).

procedure spacecheck?
£ B.2. -B.2ege <8
then BSE « |

end spacecheck2

Widthcheckl

This is used when the A and B register edges in a PE belong to the same polygon:
have some overlap: and A.UD = 0 and B.UD = 1. Figure 17 depicts a possibie
situation. '

procedure widthcheck!
it By-Ay<d
f !
} ! , 3 adge

& edge is Hroken here

Figure 18 Inierlimb dislance
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then (AWE « 1, BWE « 1]
end widthecheck!

WMdthcheck2

The widthcheck performed by this procedure is shown in Figure 18. The PE that
N performs this check has edges in A and B registers that have the same polygon
- numbers; A.UD = 0and B.UD = 1; and A rightok = 1.

procedure widthcheck2 -
BBy-Aymgm<d
then BWE « 1

end widthcheck?

6.2 PROCZSS_IN_EACH PE

In this step of the cycle, each PE examines the edges in the A and B regis-
ters and performs the checks based on this. ln order to understand the edge
processing procedure to be outlined shortly, it is necesscry to keep the following

in mind.
3 odge
y; B
—_—
J.y= 7 Tighe
7 righe
":l
A adge
Ffigure 18
p
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1. [Edges may settle only in A registers. Thus,
B.PR 01 for any PE.

2. Edges that have not yet settlsd must do so by moving to the right via B
registers. So. the case A.PR = 10 is not possible.

”?ﬁ‘ 3. Settled edges are crdered by their x values [eft to right in the A registers.

o The sequencs of settisd edges (i. e, PR = 0i) may be intsrspersed with

; :f error edges {i. e.. PR = 00) and empty edges (i. ., PR = .1).

R 4. A polygon edge may get split during processing. Figure 19(a) shows a i

polygon with a hole in it. When edge e is the B edge in the PE containing the
edge acd in its A register, the acd adge is split into the three segments a. ¢,

B

j;fé : and d. The segments a and ¢ are discarded In the case of polygon in Figure

B 1(b), the edge & causes the edge ac to be split into segments a and c. The

o segment ais discarded as no new errors with respect to this segment are

possible. All errors detected for the edge are retained by the segment.

. ‘E& A

) .- In general, edge splits and discards are carried out so as to ensure that the

“g set of active edges (i. e., PR= 01 or 10) have no overlap of their x coordinates.

e The exact mechanism by which width and spacing errors are detected is .
_ best described using aigorithmic notation below.

o .

o

% case APR of .

00 : { A edge has an error; do nothing 3

10: § A adge hasn't settled This is not possible. Only B edges
may have PR = 10}

. """ ————————
; |
i aole ! :
e : 3 edge
a : S : 4| \a ]
13
A eige _ E
i 8 I
Vx‘:‘} A adge
o
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A A.‘_u
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‘ - - R
B s
, »
M 11: { Aregister is empty |
B case B.PR of

, 00: A ~- B { Move error edge to

é: empty A register |

i 01: § Not possible as edges can

R settie only in A register |
5 10: #AUD =0
o then {No edges to the right of PE |

t (B.PR « 01; A =~ B]
{ B edge must settle hers |

.- 11: { do nothing {
- end cass
01 : } A edge is.in its correct place | .

9 case B.PR of
} 11 : § do nothing }
00 and 01 :§ not possible } ’
; 10: case A.UD of
!
[ v ]
}5 f At this point A.PR = 01, B.PR = 10, AUD =0.
a} The interior of the polygon is above the edge ]
:
b
i,

= ' 3 v Y M T ¥ N i g I N PR T A - .y - -, . -
K ;!‘!,;52_1‘, A 1' 4 “‘, - A 4' . "\ b ".. XY ..’! < - RS ...v..' .\1 - .,,~.-_‘-'\ .,,...,'q \. \‘-_
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{ Determine the relationship between the A and B edges |
case

1:Az 2Bz,

{ We have the situation of Figure 20 }
#BLD=0
then {Figure 20{a)}
[ff Bz, = Az
then { By assumption on the polygons
(Figuure 2) B.p# = A.p# |
[B.rightok « 1; B.yYmgne « A.¥]
else § BP# <> APjorBand A are
from two limbs of the same polygon|
spacecheckl.l
endif ]
endif
{ This is B's place to settle ]
APR« 10;BPR«01; A += B
§ Notc that when B.UD = i, no checks nced
be performed as relevant checks were
performed when the A edge was settle ]

3 sdge
nniG
: !

3 adge A adge

A odge
B-ud=o 3.

(a)

Figure 20
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2.Az, <B.2:

{ This situation is depicted in Figure 23 }
#BCD=0
then {Figre 21(a)}
it Az =Bz
then | By assmption on polygons {Figure 2)
B.p# = Ap#]
(A.rightok « 1; Ayngn « B.y]
else spacechecki.2
endif
eise {Figure 21(b)]
it Az, = B.z; and not B.leftok
then { Figurs 21{c). Set leftok and Z.s
in case limb test is needed. B edge
may get split later}
[Bleftok « 1; Bge +~ Bz;]
endif
* it A.rightok
then § Figure 21{c). A width cheek is necded. |
[if (B.y-Ay<d) and
(Bxy -Az) <d
* then B.WE « 1]
endif
endif

3: else: | A 2nd B edges have some overlap and so
must be part of the same pelygon. Hence
B.UD = 1. }Mgure 22 - 26 show some cases.
Note that Az, £B.2 <Az,

The case B.2; < Az isnot
possible as this would have caused
caused B edge to be split earlier,
leaving Bz, =z Az |
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Figure 25

3..: Az =Bz : {Figure 22}
3.1.1: Az, = B.z, :{Figure 22{a);

if A.rightok
then § Figure 23 |
{widtheheck?
if B.leftok .
then { Figure 23(c) ]
spacechecie2]

{ change status of A edge |
{£AVE ar ASE
then APR « 00
olss [APR « 11, AUD « 1]

3.1.2: Az, < B.z, :{Figure 24}

) { split B edge and put left part in A;
note that if there is a left limb of B,
B.leftok and B.z, were set in casge 2.
(see Figure 2i(b)}
AUDe L;Aye~By: B2 « Az,
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3
-‘!
{ } 3..3: Az > Bz, : {Figure 25}
% if A rightok

then {Figure 25(b)]
% [ widthcheck2]
f§ it B.leftok
_7‘ then {Figure 25(c)}
e ([ spacecheck? ]
5 { split A edge }
"v: Az « Bz
} { This is B's place to settle ]
A«-+BAPR«01;BPR« 10
o 3.2 Az <B.z, : § Figure 26 - 28}
£y
M:
{ There is an upward limb at the left of Bj
. B.leftolc « i, B.xegy + B2
3.2.1: Az = B.z, :{Figure 28}
i if A.rightok

then {Figures 26(a) and {b)}
.. [widthcheck?; spacecheck2]
!éﬁ § split A edge |
“ Az, ~ B.xy; Arightok « 0
A
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3.2.2 A3 > B.z,: {Figure 27(a) and {b)}
‘ { The situation depisted in Figure 27(c)
is not possible as the A edge would
have been split at B.z, when
edge c went over it |
if Arightok
then { Figure 27(a)}
widthcheck?

endif
spacecheck? § must be a limb |
{ split A edge discarding the segment

Az, to Bzn]

Az + Bz,

PPN 2% W WS

3.2.3: A=z, <B.z,: {Figure 28}

v. { split A and B retaining segments
‘. b and d, (Figure 28)}
A rightok « 0 -
(A=zB3) « (B2, A.z,)

§ This ends the case AUD =0
{ Begin last case to consider |

4:AUD=1:
{ At this time, APR =01, BPR =10, and A.UD = _j

7 / ! j L
- /
! 7 > g : / ' 3
ierie )
———

I
ipe
i unno ] ;
R, R
L
: Acpighcole ) A.vighcois L Arrighcoke )
(&) ) 2)
Figure 28
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EBy-Ay=s
then { remaining edges are too far
from A to cause errors]
[if A.WEorASE
then A PR « 00 .
else APR= 1] -
case K
4.1:Az = B.z,: {Figure 29§ '.
if not [{B.UD=! and B.z, =A.z;) =
orAz; -B.z =3] -
h then R
- [ASE « 1; BSE « 1] N
. } This is B's place to settie } Y
A«+BAPR«~01:BPR« 10 '
. ':. 3
4.2:A=, s Bz, : {Figure 30§ A
ifnot [B.UD = { and B.z; = Az, N
) orB.z; - B.2, 5] '
then -
[ASE « 1; BSE « 1] .
4.3:else: § Partial overlap {Figure 31). So, B.UD = 0}
ASE«1;BSE«1 '
case
4.3.1: B.z, < Az, {Figure 31(a) and (b) } Tl‘_
‘ § split A} ' .
> Az - B.z,.
. A~-+3B APR«01:BPR« 10 .
,. 4.3.1: B.2, 2 Az, :{Figure 31{c) and {d)} i’
& APR « 00 N
%
N .
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a: y
:: :‘ ';
%
P! { The remaining spacing errors involving the left
i part of the A edge in Figure 3i(b) and (d) wil
X be detected when handling vertical edges |
end case
N end case
. 8.3 Performance
f Under the assumption that the sort arrays and DRC are large enough to
‘ accommodate all the edges, the sort time and the DRC time is linear in the
': number of the edges in all the polygons. Furthermore the time spent extracting

the errors {rom the sort arrays is effectively overlapped with the DRC process-

3 e
i T In practice, of course, no matter how large the sort arrays and DRC, there
A will be times when the number of the edges to bs handled will exceed the capa-
B city, of the systolic arrays. In these circumstances, the layout may be parti-
tisred into vertical slices for SAX and horizontal slices for SAY (Figure 32). By
e ensuring that adjacent slices overlap by at least max{s, d{ we ensure that no
S erroneous reporting will occur. The checks may then be performed for each
A slice independently.
7. Conclusions
S We have demonstrated the potential of systolic architectures in the design
) automation fleld. While our design of a DRC several simplifying assumptions.
;’ . " )
63 f Ly ¥ of
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; i p ol T
3 I
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; o prezassemmn
% 2 o
oy a) Parcicioaing isce b) Partitiouing laco
~ vertical slices horizoutal slices
' Figare 32
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these may be relaxed at the expense of the increased complexity. In particular,
the assumptions about well formed polygons (Figure 4) and Manhatten vs
Euclidean distance (Figure gare trivially removabe.
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